Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Traffic ; 25(4): e12935, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629580

ABSTRACT

The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub-Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases-malaria, leishmaniasis and Chagas disease-in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub-Saharan Africa and Latin America.


Subject(s)
Chagas Disease , Extracellular Vesicles , Leishmania , Parasites , Trypanosoma cruzi , Animals , Humans , Chagas Disease/epidemiology , Chagas Disease/parasitology
2.
Infect Genet Evol ; 119: 105568, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367677

ABSTRACT

Genetic variations in the human angiotensin converting enzyme gene (ACE) influence ACE enzyme expression levels in humans and subsequently influence both communicable and non-communicable disease outcomes. More recently, polymorphisms in this gene have been linked to susceptibility and outcomes of infectious diseases such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and malaria infections. This study is the first to investigate the genetic diversity of ACE and ACE2 polymorphisms in the Ghanaian population. Archived filter blood blot samples from malaria patients aged ≤9 years were used. Molecular analysis for the detection of ACE rs4646994 (I/D), ACE2 rs2106809 (C/T) and rs2285666 (G/A) alleles as well as ACE2 exons 1-4 polymorphisms was conducted on 300 samples. The D allele (54%,162/300) was the most dominant polymorphism observed in the ACE rs4646994 gene whilst the G (68%, 204/300) and T alleles (59.3%,178/300) were the most frequent ACE2 rs2285666 and rs2106809 polymorphisms observed. For the 300 samples sequenced for ACE2 exons 1-4, analyses were done on 268, 282 and 137 quality sequences for exons 1, 2 and 3-4 respectively. For exon 1, the mutation D38N (2.2%; 6/268) was the most prevalent. The S19P and E37K mutations previously reported to influence COVID-19 infections were observed at low frequencies (0.4%, 1/268 each). No mutations were observed in exon 2. The N121K/T variants were the most seen in exons 3-4 at frequencies of 5.1% (K121, 7/137) and 2.9% (T121, 4/137) respectively. Most of the variants observed in the exons were novel compared to those reported in other populations in the world. This is the first study to investigate the genetic diversity of ACE and ACE2 genes in Ghanaians. The observation of novel mutations in the ACE2 gene is suggesting selection pressure. The importance of the mutations for communicable and non-communicable diseases (malaria and COVID-19) are further discussed.


Subject(s)
COVID-19 , Malaria , Humans , Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , COVID-19/genetics , Ghana/epidemiology , Malaria/epidemiology , Malaria/genetics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
3.
Front Cell Infect Microbiol ; 12: 886728, 2022.
Article in English | MEDLINE | ID: mdl-36061874

ABSTRACT

Plasmodium falciparum malaria is still an important disease in sub-Saharan Africa (sSA). Great strides have been made in its control spear-headed by artemisinin (ART)-based combination therapies (ACTs). However, concerns about the imminent spread of ART-resistant (ARTr) malaria parasites to sSA threaten gains already made. Attempts to mitigate this risk have highlighted the need to discover novel P. falciparum drug targets. Therefore, studies to deepen our understanding of the biology of P. falciparum are needed. The role of extracellular vesicles (EVs) in the biology of malaria parasites is not fully understood. Recently, the ART resistance-associated transcriptional profile has been reported to involve several biological processes connected to vesicular trafficking, proteotoxic stress, erythrocyte remodelling, and mitochondrial metabolism. We explored a role for EVs in developing the P. falciparum ARTr phenotype using bulk RNA sequencing of unsynchronized parasite cultures under untreated, 0.1% dimethyl sulfoxide and 700nM dihydroartemisinin treated conditions for six hours. As pathway and gene ontology analysis is limited in its curated knowledge repertoire on EVs biogenesis in P. falciparum, we used a modular (gene set) analysis approach to explore whether an EVs biogenesis module is associated with the ARTr phenotype in P. falciparum. We first generated well-defined EVs modules of interest and used statistical tools to determine differences in their expression among the parasite and treatment conditions. Then we used gene set enrichment analysis to determine the strength of the association between each EVs module of interest and the ARTr phenotype. This transcriptome-module phenotype association study (TMPAS) represents a well-powered approach to making meaningful discoveries out of bulk gene expression data. We identified four EVs module of interest and report that one module representing gene sets with correlated expression to PF3D7_1441800 - involved with EVs biogenesis in P. falciparum - is associated with the ARTr phenotype (R539T_DHA_treated versus R539T_untreated: normalized enrichment score (NES) = 1.1830174, FDR q-value < 0.25; C580R_DHA_treated versus C580R_untreated: NES = 1.2457103, FDR q-value < 0.25). PF3D7_1441800 has been reported to reduce EVs production when knocked out in P. falciparum. Altogether, our findings suggest a role for EVs in developing ART resistance and warrant further studies interrogating this association.


Subject(s)
Antimalarials , Artemisinins , Biological Phenomena , Extracellular Vesicles , Malaria, Falciparum , Antimalarials/pharmacology , Artemisinins/pharmacology , Humans , Malaria, Falciparum/parasitology , Phenotype , Plasmodium falciparum/genetics , Transcriptome
4.
Trends Parasitol ; 38(8): 614-617, 2022 08.
Article in English | MEDLINE | ID: mdl-35661626

ABSTRACT

Plasmodium falciparum causes malaria, and its resistance to artemisinin (ART) - a drug used for managing malaria - threatens to interfere with the effective control of malaria. ART resistance (ARTr) is driven by increased tolerance to oxidative stress and reduced haemoglobin trafficking to the food vacuole. We discuss how extracellular vesicles (EVs) may play a role in developing ARTr.


Subject(s)
Antimalarials , Artemisinins , Extracellular Vesicles , Malaria, Falciparum , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum
5.
Traffic ; 22(6): 194-200, 2021 06.
Article in English | MEDLINE | ID: mdl-33860593

ABSTRACT

Plasmodium falciparum malaria remains a disease of significant public health impact today. With the risk of emerging artemisinin resistance stalling malaria control efforts, the need to deepen our understanding of the parasite's biology is dire. Extracellular vesicles (EVs) are vital to the biology of P. falciparum and play a role in the pathogenesis of malaria. Recent studies have also shown that EVs may play a role in the development of artemisinin resistance in P. falciparum. Here, we highlight evidence on EVs in P. falciparum biology and malaria pathogenesis and argue that there is sufficient ground to propose a role for EVs in the development of P. falciparum artemisinin resistance. We suggest that EVs are actively secreted functional organelles that contribute to cellular homeostasis in P. falciparum-infected red blood cells under artemisinin pressure. Further exploration of this hypothesized EVs-based molecular mechanism of artemisinin resistance will aid the discovery of novel antimalarial therapies.


Subject(s)
Antimalarials , Artemisinins , Extracellular Vesicles , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum
6.
Evol Bioinform Online ; 17: 1176934321999640, 2021.
Article in English | MEDLINE | ID: mdl-33746510

ABSTRACT

Sub-Saharan Africa is courting the risk of artemisinin resistance (ARTr) emerging in Plasmodium falciparum malaria parasites. Current molecular surveillance efforts for ARTr have been built on the utility of P. falciparum kelch13 (pfk13) validated molecular markers. However, whether these molecular markers will serve the purpose of early detection of artemisinin-resistant parasites in Ghana is hinged on a pfk13 dependent evolution. Here, we tested the hypothesis that the background pfk13 genome may be present before the pfk13 ARTr-conferring variant(s) is selected and that signatures of balancing selection on these genomic loci may serve as an early warning signal of ARTr. We analyzed 12 198 single nucleotide polymorphisms (SNPs) in Ghanaian clinical isolates in the Pf3K MalariaGEN dataset that passed a stringent filtering regimen. We identified signatures of balancing selection in 2 genes (phosphatidylinositol 4-kinase and chloroquine resistance transporter) previously reported as background loci for ARTr. These genes showed statistically significant and high positive values for Tajima's D, Fu and Li's F, and Fu and Li's D. This indicates that the biodiversity required to establish a pfk13 background genome may have been primed in clinical isolates of P. falciparum from Ghana as of 2010. Despite the absence of ARTr in Ghana to date, our finding supports the current use of pfk13 for molecular surveillance of ARTr in Ghana and highlights the potential utility of monitoring malaria parasite populations for balancing selection in ARTr precursor background genes as early warning molecular signatures for the emergence of ARTr.

7.
Article in English | MEDLINE | ID: mdl-31427297

ABSTRACT

The continuous surveillance of polymorphisms in the kelch propeller domain of Plasmodium falciparum from Africa is important for the discovery of the actual markers of artemisinin resistance in the region. The information on the markers is crucial for control strategies involving chemotherapy and chemoprophylaxis for residents and nonimmune travelers to the country. Polymorphisms in the kelch propeller domain of Ghanaian malaria parasites from three different ecological zones at several time periods were assessed. A total of 854 archived samples (2007 to 2016) collected from uncomplicated malaria patients aged ≤9 years old from 10 sentinel sites were used. Eighty-four percent had wild-type sequences (PF3D7_1343700), while many of the mutants had mostly nonsynonymous mutations clustered around codons 404 to 650. Variants with different amino acid changes of the codons associated with artemisinin (ART) resistance validated markers were observed in Ghanaian isolates: frequencies for I543I, I543S, I543V, R561P, R561R, and C580V were 0.12% each and 0.6% for R539I. Mutations reported from African parasites, A578S (0.23%) and Q613L (0.23%), were also observed. Three persisting nonsynonymous (NS) mutations, N599Y (0.005%), K607E (0.004%), and V637G (0.004%), were observed in 3 of the 5 time periods nationally. The presence of variants of the validated markers of artemisinin resistance as well as persisting polymorphisms after 14 years of artemisinin-based combination therapy use argues for continuous surveillance of the markers. The molecular markers of artemisinin resistance and the observed variants will be monitored subsequently as part of ongoing surveillance of antimalarial drug efficacy/resistance studies in the country.


Subject(s)
Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide/genetics , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Child , Drug Resistance/genetics , Female , Genotype , Ghana , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/microbiology , Male , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Protozoan Proteins/genetics
8.
Malar J ; 18(1): 206, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31234874

ABSTRACT

BACKGROUND: Routine surveillance on the therapeutic efficacy of artemisinin-based combination therapy (ACT) has been ongoing in Ghana since 2005. The sixth round of surveillance was conducted between 2015 and 2017 to determine the therapeutic efficacy of artesunate-amodiaquine (AS-AQ) and artemether-lumefantrine (AL) in 10 sentinel sites across the country. METHODS: The study was a one-arm, prospective, evaluation of the clinical, parasitological, and haematological responses to directly observed treatment with AS-AQ and AL among children 6 months to 9 years old with uncomplicated falciparum malaria. The WHO 2009 protocol on surveillance of anti-malaria drug efficacy was used for the study with primary outcomes as prevalence of day 3 parasitaemia and clinical and parasitological cure rates on day 28. Secondary outcomes assessed included patterns of fever and parasite clearance as well as changes in haemoglobin concentration. RESULTS: Day 3 parasitaemia was absent in all sites following treatment with AS-AQ whilst only one person (0.2%) was parasitaemic on day 3 following treatment with AL. Day 28 PCR-corrected cure rates following treatment with AS-AQ ranged between 96.7% (95% CI 88.5-99.6) and 100%, yielding a national rate of 99.2% (95% CI 97.7-99.7). Day 28 PCR-corrected cure rates following treatment with AL ranged between 91.3% (95% CI 79.2-97.6) and 100%, yielding a national rate of 96% (95% CI 93.5-97.6). Prevalence of fever declined by 88.4 and 80.4% after first day of treatment with AS-AQ and AL, respectively, whilst prevalence of parasitaemia on day 2 was 2.1% for AS-AQ and 1.5% for AL. Gametocytaemia was maintained at low levels (< 5%) during the 3 days of treatment. Post-treatment mean haemoglobin concentration was significantly higher than pre-treatment concentration following treatment with either AS-AQ or AL. CONCLUSIONS: The therapeutic efficacy of AS-AQ and AL is over 90% in sentinel sites across Ghana. The two anti-malarial drugs therefore remain efficacious in the treatment of uncomplicated malaria in the country and continue to achieve rapid fever and parasite clearance as well as low gametocyte carriage rates and improved post-treatment mean haemoglobin concentration.


Subject(s)
Amodiaquine/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Antimalarials/therapeutic use , Child , Child, Preschool , Drug Combinations , Female , Ghana/epidemiology , Humans , Infant , Malaria, Falciparum/epidemiology , Male , Prospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...